The 2015-16 Winter: A story of mid-latitude atmospheric wave activity

Sam Lillo
David Parsons
School of Meteorology, University of Oklahoma

Setting the stage

- For the 2015-16 winter, seasonal predictions were based heavily on an already strong El Nino and westerly QBO.
- Prominent events of the winter:

Christmas US East Coast heat wave
Kara Sea ridge
US Mid Atlantic blizzard
US Southeast tornado outbreak
Mexico trough

- Already strong El Nino in fall
- Very warm across entire North Pacific (warm "blob" noted in subtropical E Pacific)

NCEP/NCAR Reanalysis
Surface Skin Temperature(SST) (K) Composite Anomaly 1981—2010 climo

- Strong El Nino, +PDO
- Warm across entire Indian Ocean

NCEP/NCAR Reanalysis
Surface Skin Temperature(SST) (K) Composite Anomaly 1981—2010 climo

- Classic anomalous Pacific Hadley cell
- Enhanced convection in E Indian Ocean

NCEP/NCAR Reanalysis
OLR (W/m^2) Composite Anomaly 1981-2010 climo

Wave Activity Flux

- Tropical convection known to set off Rossby wave trains, especially in interaction with the Tibetan Plateau. But the future of the wave activity is dependent on the background flow field.
- Following equations from Plumb (1985), and Takaya and Nakamura (2001), used 250hPa wave activity flux to inspect Rossby wave packets.
- Convenient diagnostic tool for providing a snapshot analysis of RWPs; where activity is being emitted, absorbed, and how waves within the packet are breaking.
- The following plots include the 250hPa streamfunction anomaly, and wave activity flux

Anticyclone over the Northeast Pacific breaks toward the Gulf of Alaska

Downstream trough breaks equatorward, amplifying large ridge over the E US

Record breaking warmth over Northeast US for Christmas

Trough deepens downstream over the N Atlantic

Finally, the N Atlantic trough breaks poleward, culminating in an anomalous anticyclone over the Kara Sea

Hovmoller plot of the zonal component of WAF.

Here WAF has been scaled by 10⁻³ m²/s²

Then masking out values less than 0.5

Focuses attention solely on existing RWPs within the 20-70N latitude band, without the impact of the null values in the averaging

- Kara Sea ridge amplifies to strongest on record.
- Arctic Oscillation plummets from +4SD to -4SD in less than a month.
- Breakdown of polar vortex entirely tropospheric.
- Precedes Mid Atlantic blizzard

Very well-defined wave train extending from N Africa, across India, and into the W Pacific

Wave packet amplifies Northeast Pacific trough. WAF leaking from mid-latitude wave guide to subtropical wave guide in E Pacific

Leads to trough over central US and tornado outbreak in the Southeast on 23-24 February

Wave train reinvigorated over North Pacific. Amplifies subtropical anticyclone in E Pacific.

Strong anticyclonic wave breaking toward Mexico. Begins deepening downstream trough.

Highly amplified trough-ridge wave from Mexico to E US

Predictability and Wave Flux

- Increased medium range forecast skill can be associated with longlasting RWPs (Grazzini and Vitart, 2015),
- e.g. across the Pacific.
- In contrast, shorter RWPs originating over North America and tracking across the Atlantic are associated with lower skill.
- The caveat is the existence of the RWP in the initialization.
- RWPs triggered by convection can be associated with significant drops in forecast skill, when the model is mishandling the convection in the first place (Lillo and Parsons 2016).
- An accurate forecast requires correct recognition of RWPs (or in general, WAF), and correct recognition of wave guides in the background flow field.

ECMWF H5_sd ERROR init 03Mar16 valid 10Mar16

ECMWF H5_sd ERROR init 29Feb16 valid 10Mar16

ECMWF H5_sd ERROR init 25Feb16 valid 10Mar16

ECMWF H5_sd ERROR init 11Feb16 valid 10Mar16

ECMWF H5_sd ERROR init 08Feb16 valid 10Mar16

ECMWF H5_sd ERROR init 04Feb16 valid 10Mar16

Compare to modern strong El Ninos

1982-83

1997-98

2009-10

Rossby wave refraction and wave guides

Hoskins and Karoly (1981) —

- Refraction of Rossby wave activity dependent on the meridional gradient of absolute vorticity in the background flow field.
- Reflection occurs at turning latitudes dictated by the background vorticity gradient, and varies by the zonal wavenumber of the Rossby waves.
- A waveguide can then be defined as a meridional maximum in the vorticity gradient. Or more specifically, parallel and opposite turning latitudes.

Figures from Hoskins and Ambrizzi (1993)

FIG. 2. Schematic stationary Rossby wavenumber (K_s) profiles and ray path refraction. In each panel, K_s is shown as a function of y and schematic ray paths are shown by heavy lines with arrowheads. (a) simple refraction; (b) reflection from a turning latitude Y_{TL} at which $K_s = k$; (c) reflection of all wavenumbers before a latitude Y_B at which $\beta_* = 0$; (d) refraction into a critical latitude Y_{CL} at which $\bar{U} = 0$; (e) waveguide effect of a K_s maximum. For more discussion see text.

Note the dearth of wave activity crossing over E Asia

While 2016 featured multiple wave trains maintaining greater coherence and amplitude around the globe

- 1) Preceded Kara Sea ridge
- 2) Wave train responsible for tor outbreak and Mexico trough

Record high wave activity with wave train in late Feb - early March

31Jan.1983 — 01Mar.1983

31Jan.1998 - 01Mar.1998

31Jan.2010 - 01Mar.2010

01Feb.2016 - 01Mar.2016

Summary

- Unusual level of mid-latitude wave activity observed during the 2015-16 strong El Nino event.
- Anomalous Indian Ocean convection may have helped to set off wave trains from Tibetan Plateau.
- Warm North Pacific diffused the normal Nino tropics-subtropics temp gradient, broadening the Hadley cell, weakening the subtropical jet wave guide.
- Allows higher wavenumber wave activity to leak into mid-latitude wave guide, and vice-versa.
- Active mid-latitude wave guide responsible for several high impact weather events.